skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Yuan, Xinyu"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Plant metabolomes are structurally diverse. One of the most popular techniques for sampling this diversity is liquid chromatography–mass spectrometry (LC‐MS), which typically detects thousands of peaks from single organ extracts, many representing true metabolites. These peaks are usually annotated using in‐house retention time or spectral libraries, in silico fragmentation libraries, and increasingly through computational techniques such as machine learning. Despite these advances, over 85% of LC‐MS peaks remain unidentified, posing a major challenge for data analysis and biological interpretation. This bottleneck limits our ability to fully understand the diversity, functions, and evolution of plant metabolites. In this review, we first summarize current approaches for metabolite identification, highlighting their challenges and limitations. We further focus on alternative strategies that bypass the need for metabolite identification, allowing researchers to interpret global metabolic patterns and pinpoint key metabolite signals. These methods include molecular networking, distance‐based approaches, information theory–based metrics, and discriminant analysis. Additionally, we explore their practical applications in plant science and highlight a set of useful tools to support researchers in analyzing complex plant metabolomics data. By adopting these approaches, researchers can enhance their ability to uncover new insights into plant metabolism. 
    more » « less
    Free, publicly-accessible full text available March 1, 2026
  2. Abstract MotivationThousands of genomes are publicly available, however, most genes in those genomes have poorly defined functions. This is partly due to a gap between previously published, experimentally characterized protein activities and activities deposited in databases. This activity deposition is bottlenecked by the time-consuming biocuration process. The emergence of large language models presents an opportunity to speed up the text-mining of protein activities for biocuration. ResultsWe developed FuncFetch—a workflow that integrates NCBI E-Utilities, OpenAI’s GPT-4, and Zotero—to screen thousands of manuscripts and extract enzyme activities. Extensive validation revealed high precision and recall of GPT-4 in determining whether the abstract of a given paper indicates the presence of a characterized enzyme activity in that paper. Provided the manuscript, FuncFetch extracted data such as species information, enzyme names, sequence identifiers, substrates, and products, which were subjected to extensive quality analyses. Comparison of this workflow against a manually curated dataset of BAHD acyltransferase activities demonstrated a precision/recall of 0.86/0.64 in extracting substrates. We further deployed FuncFetch on nine large plant enzyme families. Screening 26 543 papers, FuncFetch retrieved 32 605 entries from 5459 selected papers. We also identified multiple extraction errors including incorrect associations, nontarget enzymes, and hallucinations, which highlight the need for further manual curation. The BAHD activities were verified, resulting in a comprehensive functional fingerprint of this family and revealing that ∼70% of the experimentally characterized enzymes are uncurated in the public domain. FuncFetch represents an advance in biocuration and lays the groundwork for predicting the functions of uncharacterized enzymes. Availability and implementationCode and minimally curated activities are available at: https://github.com/moghelab/funcfetch and https://tools.moghelab.org/funczymedb. 
    more » « less
  3. Kanyuka, Kostya; Hammond-Kosack, Kim (Ed.)
    Abstract Systemic acquired resistance (SAR), a type of long-distance immunity in plants, provides long-lasting resistance to a broad spectrum of pathogens. SAR is thought to involve the rapid generation and systemic transport of a mobile signal that prepares systemic parts of the plant to better resist future infections. Exploration of the molecular mechanisms underlying SAR have identified multiple mobile regulators of SAR in the last few decades. Examination of the relationship among several of these seemingly unrelated molecules depicts a forked pathway comprising at least two branches of equal importance to SAR. One branch is regulated by the plant hormone salicylic acid (SA), and the other culminates (based on current knowledge) with the phosphorylated sugar derivative, glycerol-3-phosphate (G3P). This review summarizes the activities that contribute to pathogen-responsive generation of SA and G3P and the components that regulate their systemic transport during SAR. 
    more » « less